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Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder
(PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to
motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n= 1642; Control n= 2573) across 40 sites from the
ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar
parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for
age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88%
trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls,
people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the
posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of
PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status.
These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum
appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with
vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how
cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.
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INTRODUCTION
Exposure to trauma is common, and nearly 10% of trauma
survivors develop chronic symptoms of posttraumatic stress
disorder (PTSD [1]), a debilitating psychiatric condition character-
ized by a constellation of symptoms including intrusive memories,

avoidance, hypervigilance, and negative changes in mood and
cognition [2]. An extensive body of research has illuminated key
brain regions that differentiate PTSD patients from trauma-
exposed controls [3–5]. Notably, PTSD has been consistently
linked to smaller volume of brain regions including the
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hippocampus [6–9], ventromedial prefrontal cortex (vmPFC
[10–12]), amygdala [13–15], insula [16–18], and anterior cingulate
cortex (ACC; [9, 19, 20]). These regions are part of a critical neural
circuit supporting diverse cognitive and affective functions that
are disrupted in PTSD, including threat processing, emotion
regulation, and emotional memory [21, 22].
A growing body of structural and functional magnetic resonance

imaging studies has begun to examine the role of the cerebellum
in PTSD [23]. Historically known for its central role in the
vestibulomotor system [24], research emerging over the past three
decades demonstrates that the cerebellum contributes immensely
to higher-order cognition and emotion [25–27]. In fact, the human
cerebellum has rapidly (and disproportionately) evolved over time
[28–30]. Despite being approximately 10% of the brain’s overall
size [31], the cerebellum houses the vast majority of the brain’s
total neurons [32] and occupies nearly 80% of the neocortical
surface area [30]. The cerebellum shares rich anatomical connec-
tions with much of the brain, including with prefrontal and limbic
areas [28, 33–35], strongly suggesting that it participates in
processes beyond motor coordination that may be highly relevant
to PTSD. Moreover, the cerebellum’s widespread connectivity with
stress-related regions (such as with the amygdala, hippocampus,
and periaqueductal gray) may make it especially vulnerable to
traumatic stress, potentially leading to the development of PTSD
symptoms by disrupting typical brain-mediated stress responses
via cerebro-cerebellar circuits [36, 37]. Recent studies have also
demonstrated that the cerebellum is involved in fear learning and
memory [23, 38–40]; considering PTSD is characterized by
aberrancies in threat detection and processing [41, 42], this
accumulating evidence argues for incorporating the cerebellum
into well-established translational models of PTSD.
Indeed, PTSD has been linked to disrupted functional con-

nectivity between the cerebellum and key cognitive and affective
regions, including the amygdala [43]. Meta-analytic work has also
suggested cerebellar activation differentiates PTSD patients from
healthy controls [44–46]. At the structural level, smaller cerebellar
volume has been observed in both adult [47, 48] and pediatric
[49, 50] PTSD samples. In one of the largest existing studies
(N= 84), PTSD patients had smaller left cerebellar hemisphere and
vermal volumes compared to trauma-exposed controls. Yet
structural studies have not consistently implicated the cerebellum
in PTSD [51–53], and limitations across studies have made it
challenging to reconcile these variable findings. First, a majority of
the studies in adults had small sample sizes ranging from 39 [48]
to 99 [53]; in fact, the three studies with null findings [51–53], had
a cumulative total of 82 PTSD patients. Studies have also varied
substantially in the structural metrics (volume [47], voxel-wise
morphology [48], cortical thickness [53]), and samples (combat
[52], violence exposed [47, 51], first responders [53]) employed.
Prior research on cerebellar volume in PTSD has also been

limited by largely neglecting to consider important neuroanato-
mical subdivisions of the cerebellum that differentially map onto
motor, cognitive, and affective functions. Gross anatomy delineates
two major fissures dividing the cerebellum into three anatomical
divisions: the anterior (lobules I–V), posterior (lobules VI-IX), and
flocculonodular (lobule X) lobes [54]. The corpus medullare, the
white matter core of the cerebellum, is a dense bundle of
myelinated fibers with both afferent and efferent projections to
transmit neural signals to and from the cerebellum [55]. The
anterior lobe receives spinal afferents via spinocerebellar tracts and
shares reciprocal connections with motor cortices to help support
motor movements, gait, and equilibrium [56], while the flocculo-
nodular lobe is remarkable for its role in receiving vestibular and
visual inputs and contributing to the regulation of balance, eye
movements, and reflexive responses [55]. By contrast, extensive
non-motor functions have been identified within the evolutionarily
newer posterior cerebellum [57], which lacks spinal cord inputs and
has connections with cortical areas integral to higher-order

processes, including the prefrontal cortex and cingulate gyrus
[58, 59]. Activation within the posterior lobe has been observed
during language and verbal working memory (lobule VI, crus I),
spatial processing (lobule VI), and executive function (lobule VI and
VIIB, crus I) tasks [26, 57, 60]. Aversive stimulus processing, such as
noxious heat and unpleasant images, also appears to involve the
posterior cerebellum (lobules VI and VIIB and crus I), implicating
these regions in defensive responding [61]. The vermis—the
medial cortico-nuclear column connecting the left and right
cerebellar hemispheres–is considered an extension of the Papez
emotion circuit [62] and is activated during affective processing
[25, 27, 63]. Vermal lobules also interact with other regions critical
for emotional associative learning including the amygdala,
hypothalamus, and periaqueductal gray [25, 64, 65]. Taken
together, these careful studies on functional topography have
identified three broad subdivisions of the cerebellum comprising
sensorimotor, cognitive, and limbic areas [26].
As a heterogenous disorder linked to dysfunction of multiple

cerebellum-supported processes, it is unclear whether structural
differences in the cerebellum in PTSD are global or may be
localized to specific subregions. Most studies, however, have taken
a fairly crude approach to examining the cerebellum in PTSD,
simply focusing only on the vermis [50, 52] and hemispheric total
volumes [47, 49]. While functional work has identified PTSD-
related activation differences distributed across the cerebellum,
including within the vermis [47, 50], crus [48, 66], and lobules VI
and VII [67–69], only one structural study [53] has taken a more
granular approach in parcellating the cerebellum to test
subregional specificity. Importantly, better understanding the
relevance of cerebellar structure in the pathophysiology of PTSD
may help elucidate potential mechanisms that perpetuate chronic
symptoms of PTSD and aid in our ability to develop targeted,
effective interventions.
To this end, the present study employed a mega-analysis of

total and subregional cerebellar volumes in a large, multi-cohort
dataset from the Enhancing NeuroImaging Genetics through
Meta-Analysis (ENIGMA)-Psychiatric Genomics Consortium (PGC)
PTSD workgroup. In contrast to a meta-analysis, a mega-analysis
centralizes and pools data from multiple sites and fits statistical
models to the aggregated data while adjusting for site effects. We
used a novel, standardized ENIGMA cerebellum parcellation
protocol [55, 70] to quantify cerebellar lobule volumes using
structural MRI data from 4215 adults with (n= 1642) and without
(n= 2573) PTSD. We examined the effects of PTSD on cerebellar
volumes, adjusting for age, gender, and total intracranial volume.
Based on prior work [47–50], we hypothesized that PTSD would be
associated with smaller total cerebellum volume. Considering
functional topography indicates the ‘limbic’ and ‘cognitive’
cerebellum localize to the vermis and posterior lobes, respectively,
we hypothesized PTSD would be associated with smaller volumes
within these two anatomical divisions [25–27].

METHODS AND MATERIALS
Sample
Clinical, demographic, and neuroimaging data from the ENIGMA-PGC PTSD
working group included in the current study are presented in Table 1. MRI
scans from 4215 subjects, including 1642 PTSD patients and 2573 healthy
controls (approximately 88% trauma-exposed and 12% trauma-naïve;
see Supplementary Material), were automatically segmented into cerebel-
lar subregions. All study procedures were approved by local institutional
review boards (IRB), and participants provided written informed consent.
The present analyses were granted exempt status by the Duke University
Health System IRB.

Image acquisition and processing
Whole-brain T1-weighted anatomical MR images were collected from each
participant. Acquisition parameters for each cohort are detailed in
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Supplementary Table S2. Segmentation and quality control procedures
were performed at Duke University. A subset of the data (n= 1045) from
the Long-Term Impact of Military-Relevant Brain Injury Consortium-Chronic
Effects of Neurotrauma Consortium (LIMBIC-CENC) [71] were processed at
University of Utah. Cerebellar parcellation was carried out using a deep-
learning algorithm, Automatic Cerebellum Anatomical Parcellation using
U-Net with Locally Constrained Optimization (ACAPULCO) [72]. Images
were corrected for intensity inhomogeneity using N4, blurred with a 3D
Gaussian kernel (SD= 3mm), and transformed to MNI template space.
ACAPULCO then employed a cascade of two convolutional neural
networks to first define a 3D-bounding box around the cerebellum and
then divide it into anatomically meaningful regions. This ultimately
resulted in volumetric estimates for the total cerebellum and 28
subregions, including the hemispheric anterior (lobules I-III, IV, and V),
posterior (lobules VI, VIIB, VIIIA, VIIIB, IX, and crus I-II), and flocculonodular
(lobule X) lobes, vermal lobules VI, VII, VIII, IX, and X, and the corpus
medullare (Fig. 1). ACAPULCO achieves results comparable to other
established cerebellum parcellation protocols (e.g., CERES2), but may
perform better for multi-site datasets [72].
Following segmentation, a two-step quality control procedure was

employed, consisting of (1) removal of statistical outliers ± 2.689 SD from
the site mean, and (2) visual inspection of cerebellar parcels. Each subject’s
segmentation was visually inspected and given a global score by a
minimum of two trained raters (AH, SL, MB, LB) on a scale from 1 (good) to
3 (poor/failed). In the event of a discrepancy between raters, the
parcellation was examined by a third rater for consensus. Ratings were
performed using previously published quality control procedures [55].
Raters were trained using a graduated approach comprising didactic
instruction on neuronanatomical landmarks of the cerebellum and its
surrounding anatomy (e.g., cerebellar fissures, tentorium), and collabora-
tive rating or practice examples prior to independence. Segments were
considered individually; therefore, select subregional volumes (e.g.,
statistical outliers, circumscribed segmentation errors) for a participant
could be excluded, while the remainder of their segments were retained
for analysis if correct. Subjects receiving a global score of 3 were excluded
from all analyses. A breakdown of ratings by site is noted in Supplementary
Table S3.

Statistical analysis
To examine whether PTSD diagnosis was associated with volume
differences in the grey matter volumes of the whole cerebellum,
hemispheric subregions, vermis, and cerebellar white matter, we
performed a series of linear mixed effects models. Statistical analyses
were conducted using the lmer package [73] in R v4.3.1. In each model,
age, gender, and total intracranial volume were treated as fixed effects,
and site/scanner was treated as a random effect. We considered different
scanners within sites as separate sites, resulting in a total number of
49 sites coded separately in our analyses. Models were repeated

implementing PTSD severity–rather than diagnosis – as a continuous
predictor. Due to site measurement differences, PTSD severity was
quantified as a percentage of the total score possible (see Table 1). The
Benjamini-Hochberg procedure [74] was used to adjust significance values
to control the false discovery rate (p-FDR < 0.05; number of tests = 29).
These adjustments were done separately for PTSD diagnosis and PTSD
severity. Cohen’s d was calculated as a measure of effect size.
Given frequent co-occurrence of PTSD and likely independent effects on

cerebellum volume, secondary analyses were conducted to examine the
potential effects of depression [75, 76], alcohol use disorder [77, 78], and
childhood trauma [79, 80] on cerebellar volumes. For sites with available
covariate data (see Supplemental Material), an additional series of linear
mixed effects models was conducted, including fixed effects of (1) major
depressive disorder diagnosis, (2) alcohol use disorder diagnosis, and (3)
total score on the Childhood Trauma Questionnaire (CTQ [81]);

RESULTS
Associations between PTSD diagnosis and cerebellum
volumes
The effects of PTSD diagnosis on cerebellum volumes are
presented in Table 2. Consistent with hypotheses, after adjusting
for age, gender, and total intracranial volume, PTSD diagnosis was
associated with significantly smaller total cerebellar volume,
b=−981.471, t=−2.793, p-FDR= 0.005. PTSD diagnosis was also
associated with smaller volume of the corpus medullare,
b=−154.149, t=−2.188, p-unc= 0.026, but this did not survive
multiple comparisons corrections (p-FDR= 0.096).
Within the anterior cerebellum (lobules I-V), PTSD diagnosis was

associated with a smaller volume of right lobule V, b=−43.364,
t=−2.504, p-unc= 0.012, but this did not survive multiple
comparisons corrections (p-FDR= 0.051).
Within the posterior cerebellum (crus, lobules VI-IX), PTSD

diagnosis was associated with smaller volume of left crus II,
b=−114.647, t=−2.753, p-FDR= 0.034, left lobule VIIB,
b=−124.109, t=−3.536, p-FDR= 0.005, and right lobule VIIB,
b=−138.698, t=−3.691, p-FDR= 0.005.
No significant effects of PTSD diagnosis were observed on

volumes within the flocculonodular lobe (lobule X). There was an
effect of PTSD on left lobule X volume, but this did not survive
multiple comparisons corrections (p-FDR= 0.093).
There was a significant effect of PTSD diagnosis on volumes of

vermal lobules VI, b=−20.507, t=−2.649, p-FDR= 0.039, and VIII,
b=−29.302, t=−2.767, p-FDR= 0.034. There were no other
significant effects of PTSD within the vermis.

Fig. 1 ACAPULCO cerebellum parcellation for a representative subject. A three-dimensional display is presented in the upper half of the
figure, along with coronal (left), sagittal (middle), and axial (right) views below. L left, R right.
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Although these differences in cerebellar volumes between patients
with PTSD and healthy controls were significant (p-FDR< 0.05), as
calculated with Cohen’s d, effects were generally quite small
(all d’s <−0.12). Figure 2 depicts a map of the effect sizes.

PTSD severity
When examining PTSD symptom severity (rather than diagnostic
status), results were similar, if generally more robust (see Table 3).
Specifically, PTSD symptom severity was associated with signifi-
cantly smaller total cerebellum volume, b=−693.478, t=−3.719,
p-FDR= 0.002, and corpus medullare volumes, b=−109.441,
t=−2.915, p-FDR= 0.015. Effects were consistent across the
posterior cerebellum and vermis, with significant effects of PTSD
symptom severity on volumes of left crus II, b=−67.120,
t=−3.044, p-FDR= 0.012, left lobule VIIB, b=−73.912, t=−3.995,
p-FDR < 0.001, right lobule VIIB, b=−81.890, t=−4.085, p-FDR <
0.001, and vermal lobules VI, b=−13.931, t=−3.393, p

-FDR
= 0.005,

and VIII, b=−17.270, t=−3.058, p-FDR= 0.012.

By contrast, the effect of PTSD on the volume of right lobule V
retained significance when examining symptom severity instead
of diagnosis, b=−22.300, t=−2.412, p-FDR= 0.046. Additionally,
PTSD symptom severity was associated with a significantly smaller
volume of the flocculonodular cerebellum, with effects observed
in both hemispheres of lobule X (left: b=−3.870, t=−2.512,
p-FDR= 0.039; right: b=−4.382, t=−2.777, p-FDR= 0.020).

Potential confounding variables
When including covariates assessing depression, alcohol use, and
childhood trauma, effects of PTSD on cerebellar volumes were
somewhat diminished (See Supplemental Material); however,
when using a more liberal approach to correct for multiple
comparisons, most significant effects of PTSD were retained even
when accounting for depression and alcohol use disorders.
Notably, detecting significant effects in these additional analyses
presented a challenge to statistical power. There was high
collinearity between PTSD and covariates, and—particularly in

Table 2. Effects of PTSD diagnosis on cerebellum volume.

ROI N b SE t p-FDR d

Anterior

Left I-III 4185 −7.950 6.571 −1.210 0.420 −0.037

Left IV 4164 −16.796 17.752 −0.946 0.499 −0.029

Left V 4119 15.202 15.935 0.954 0.499 0.030

Right I-III 4186 −4.924 6.910 −0.713 0.575 −0.022

Right IV 4162 −4.848 18.633 −0.260 0.823 −0.008

Right V 4114 −43.364 17.320 −2.504 0.051 −0.079

Posterior

Left VI 4165 −0.260 42.033 −0.006 0.995 −0.001

Left Crus I 3979 −26.297 63.356 −0.415 0.728 −0.013

Left Crus II 4112 −114.647 41.643 −2.753 0.034* −0.086

Left VIIB 4098 −124.109 35.099 −3.536 0.005** −0.111

Left VIIIA 4037 −20.182 35.428 −0.570 0.635 −0.018

Left VIIIB 3897 −41.391 21.478 −1.927 0.157 −0.062

Left IX 4037 −21.656 20.778 −1.042 0.499 −0.034

Right VI 4175 37.889 43.527 0.870 0.506 0.027

Right Crus I 4109 −92.370 62.433 −1.480 0.310 −0.046

Right Crus II 4164 −76.383 44.304 −1.724 0.221 −0.054

Right VIIB 4029 −138.698 37.578 −3.691 .005** −0.116

Right VIIIA 3814 −32.361 32.279 −1.003 0.499 −0.033

Right VIIIB 3856 −17.293 21.923 −0.789 0.543 −0.025

Right IX 4044 −19.311 21.166 −0.912 0.499 −0.030

Flocculonodular

Left X 4176 −6.291 2.879 −2.185 0.093 −0.068

Right X 4175 −3.529 2.950 −1.196 0.420 −0.037

Vermis

Vermis VI 4187 −20.507 7.740 −2.649 0.039* −0.083

Vermis VII 4189 −3.295 5.700 −0.578 0.635 −0.018

Vermis VIII 4191 −29.302 10.590 −2.767 0.034* −0.086

Vermis IX 4186 −13.690 10.409 −1.315 0.391 −0.045

Vermis X 4175 −3.274 1.939 −1.689 0.221 −0.054

Total Volume 4192 −981.471 351.369 −2.793 0.005** −0.086

Corpus Medullare 4162 −154.149 70.439 −2.188 0.093 −0.068

Results of linear mixed effects models predicting cerebellar volumes including fixed effects of age, gender, PTSD diagnosis, intracranial volume, and a random
effect of site.
***p-FDR < 0.001, **p-FDR < 0.01, *p-FDR < .05
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the case of childhood trauma severity—substantially reduced
sample size because not all sites reported these variables. In cases
where the effect of PTSD diagnosis was non-significant upon
inclusion of covariates, we followed up by testing whether
depression, alcohol use, or childhood trauma predicted cerebellar
volumes on their own; in no instance were covariates found to
independently predict cerebellar volumes when PTSD status was
excluded from the model, demonstrating that our initial findings
were specific to PTSD.
Depression status was available for the majority of subjects

(n= 3978). When adjusting for major depressive disorder diag-
nosis, PTSD diagnosis remained significantly associated with
smaller volume of both left and right lobule VIIB, and vermis VI.
While initially significant, effects of PTSD diagnosis on right lobule
V (p-FDR= 0.096) and left crus II (p-FDR= 0.133) volumes did not
survive correction for multiple comparisons. PTSD symptom
severity was associated with smaller total cerebellum and vermis
VIII volumes. Uniquely, depression diagnosis was associated with
smaller volume of right lobule X, b=−8.282, t=−2.356,
p-FDR= 0.038.
When adjusting for alcohol use disorder (n= 2997), PTSD was

associated with significantly smaller cerebellar volumes, including
the total cerebellum (p-FDR= 0.046) and localized subregions in
the posterior lobe and vermis. Specifically, PTSD diagnosis was
negatively associated with volumes of the left crus II (p-FDR=
0.032), right lobule VIIB (p

-FDR
= 0.003), and vermal lobules VI

(p-FDR= 0.034) and VIII (p-FDR= 0.050). Initially significant effects of
PTSD diagnosis on right lobule V (p-FDR= 0.105) and left lobule
VIIB (p-FDR= 0.056) did not survive correction for multiple
comparisons.
Including CTQ severity as a covariate resulted in null effects of

PTSD diagnosis; significant effects in left lobules VIIB (p-FDR=
0.280) and VIIIB (p

-FDR
= 0.161) were no longer significant after

correction for multiple comparisons. Considering the largest
sample size in these additional analyses was 1013 (approximately
a quarter of the sample size in our primary analyses) and effects of
PTSD diagnosis were small (Cohen’s d < 0.12), we were poorly
powered to detect significant effects of PTSD when accounting for
childhood trauma exposure. In addition, 77% of participants with
PTSD endorsed a history of childhood trauma, contributing further
challenges to identifying dissociable effects of childhood trauma
and PTSD (See Supplemental Material). When we excluded PTSD
from the model, however, childhood trauma was not significantly

associated with cerebellar volumes in any of the regions
implicated in primary analyses (e.g., total cerebellum, left and
right lobules VIIB), suggesting that these effects are specific
to PTSD.

DISCUSSION
Leveraging an international, multisite dataset from ENIGMA-PGC
PTSD, we conducted a mega-analysis of total and subregional
cerebellar volumes in PTSD. Consistent with hypotheses based on
published work [47–50], PTSD was associated with smaller total
cerebellar volume. We found subregional specificity linking PTSD
to smaller volumes in the posterior cerebellum, vermis, and
flocculonodular cerebellum. Effects of PTSD on cerebellum volume
were consistent (and generally more robust) when examining
symptom severity rather than diagnostic status. Overall, these
findings contribute to an emerging literature that underscores the
relevance of cerebellar structure in the pathophysiology of PTSD.
Although the appreciation of the cerebellum for its contributions
to cognitive and affective function is relatively recent, the current
results bolster a growing literature confirming the cerebellum is
not exclusively devoted to motor function and may, in fact, have
unique relevance to psychiatric conditions including PTSD
[23, 35, 82].
Multiple neuroimaging studies have suggested that altered

structure and function of the posterior cerebellum may be a
neural correlate of PTSD. For instance, structural differences in
lobules VIIB, VIIIA, and VIIIB were found in combat-exposed
veterans with PTSD [69]. Functionally, PTSD has been linked to
increased activation during attentional and emotional tasks
[67, 68] and decreased resting-state amplitude of low-frequency
fluctuation [83] in lobule VI. In a sample of sexual assault survivors,
PTSD severity was negatively associated with activation in lobules
VI, VIII, IX, and crus I during the performance of an emotional go/
no-go task, and positively associated with activation in left
cerebellar lobules VII-IX and crus I-II when retrieving positive
memory during a mental imagery task [84]. PTSD has also been
linked to decreased global connectivity within the posterior
cerebellum during symptom provocation [85]. As the most
phylogenetically recent part of the cerebellum [28], the posterior
lobe is intricately linked with paralimbic and association cortical
areas and plays an integral role in the integration of perception,
emotion, and behavior [26, 27]. Accordingly, the posterior

Fig. 2 Effects of PTSD diagnosis on cerebellar subregion volumes. Atlas-based effect size (Cohen’s d) maps and MNI-based coronal slices
(top: y=−72; bottom: y=−54) of the significant between-group differences for cerebellar subregion volumes in PTSD vs. Controls. Negative
effect sizes reflect smaller volumes in PTSD. Regions significant at p-FDR < 0.05 are depicted in color, with the exception of right lobule V, where
p-FDR= 0.051 after adjustment; right lobule V was significant p-FDR= 0.046) when examining PTSD severity instead of diagnosis. Grey-shaded
subregions were non-significant. CM corpus medullary.
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cerebellum contributes to the salience network (lobules VI and VII;
[25, 86]) and diverse cognitive-affective processes including
working memory, attentional allocation, and associative learning
[26, 87]. In the context of the current findings, smaller volume of
lobule VIIB and crus II may be implicated in the pathophysiology
of PTSD, perhaps mapping directly onto symptoms such as
hypervigilance and concentration difficulties.
In the present study, PTSD was also associated with smaller

volume of vermal lobules VI and VIII. The cerebellar vermis is
considered part of the ‘limbic’ cerebellum and appears to play a
key role in emotional processing, learning, and memory
[25, 27, 63]. Prior work has demonstrated that PTSD is associated
with smaller volume [47, 50] and increased signal variability [88] of
the vermis. Importantly, structural abnormalities in the vermis may
provide increased spatial specificity within existing translational
models of PTSD, as converging evidence from both animals and
human subjects has shown vermal activation is important for both

acquisition [89–92] and extinction [93, 94] of conditioned fear. The
cerebellar vermis has strong connections to brain regions
(including the brainstem, amygdala, and hypothalamus) that
regulate critical survival functions [95]. The vermis may contribute
to fear learning via threat-associated autonomic changes facilitat-
ing defensive behavior, such as increases in respiration, heart rate,
and blood pressure [91]. Animal research highlights mechanistic
links between vermal-midbrain connectivity and defensive beha-
vior; in rats, for instance, lesions of the pathway between the
periaqueductal gray and vermal lobule VIII provoke fear-evoked
freezing behavior [96]. Importantly, vermal connectivity is also
implicated in clinical human samples, and PTSD is associated with
disrupted resting-state functional connectivity from the vermis to
amygdala, periaqueductal gray, and ventromedial prefrontal
cortex [97].
Unexpectedly, PTSD was also associated (diagnosis p-FDR=

0.051, severity p
-FDR

= 0.046) with smaller volume of right lobule V,

Table 3. Effects of PTSD severity on cerebellar volumes.

ROI N b SE t p-FDR d

Anterior

Left I-III 3757 −6.118 3.478 −1.759 0.170 −0.057

Left IV 3731 −8.888 9.383 −0.947 0.433 −0.031

Left V 3688 −3.176 8.379 −0.379 0.757 −0.013

Right I-III 3756 −3.551 3.654 −0.972 0.433 −0.032

Right IV 3733 −1.142 9.817 −0.116 0.907 −0.004

Right V 3685 −22.300 9.244 −2.412 0.046* −0.081

Posterior

Left VI 3736 −11.135 22.273 −0.500 0.688 −0.016

Left Crus I 3555 −6.496 33.571 −0.193 0.877 −0.006

Left Crus II 3681 −67.120 22.051 −3.044 0.012* −0.101

Left VIIB 3667 −73.912 18.502 −3.995 <.001*** −0.132

Left VIIIA 3606 −27.345 18.976 −1.441 0.241 −0.048

Left VIIIB 3478 −19.519 11.520 −1.694 0.191 −0.058

Left IX 3608 −14.737 11.024 −1.337 0.263 −0.047

Right VI 3742 −13.861 23.270 −0.596 0.640 −0.020

Right Crus I 3678 −56.407 33.086 −1.705 0.191 −0.056

Right Crus II 3733 −54.132 23.603 −2.293 0.070 −0.076

Right VIIB 3595 −81.890 20.044 −4.085 <0.001*** −0.136

Right VIIIA 3386 −34.081 17.355 −1.964 0.144 −0.068

Right VIIIB 3434 −7.798 11.865 −0.657 0.618 −0.023

Right IX 3618 −12.389 11.168 −1.109 0.369 −0.041

Flocculonodular

Left X 3742 −3.870 1.541 −2.512 0.039* −0.082

Right X 3741 −4.382 1.578 −2.777 0.020* −0.091

Vermis

Vermis VI 3755 −13.931 4.105 −3.393 0.005** −0.112

Vermis VII 3756 −4.904 3.027 −1.620 0.191 −0.053

Vermis VIII 3759 −17.270 5.648 −3.058 0.012* −0.102

Vermis IX 3754 −9.275 5.703 −1.626 0.191 −0.062

Vermis X 3743 −1.672 1.023 −1.635 0.191 −0.057

Total Volume 3758 −693.478 186.477 −3.719 0.002** −0.121

Corpus Medullare 3728 −109.441 37.541 −2.915 0.015* −0.096

Results of linear mixed effects models predicting cerebellar volumes including fixed effects of age, gender, PTSD severity, intracranial volume, and a random
effect of site. To harmonize across sites that employed different instruments (e.g., CAPS-IV, PCL-5), PTSD severity was represented as a percentage of total
points possible.
***p-FDR < 0.001, **p-FDR < 0.01, *p-FDR < .05
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a subregion found within the anterior lobe of the cerebellum.
Lobule V has been more consistently implicated in sensorimotor
functions, including execution of hand movements and percep-
tion of tactile stimulation to the hand and foot [98, 99]. Prior work
has found evidence of motor slowing in PTSD [100], and executive
dysfunction is a common feature of PTSD [101]. Importantly, many
neuropsychological tests – including processing speed, set
shifting, and design fluency – are dependent on speeded writing
or drawing tasks. It is possible that these neuropsychological
observations may be affected by both cognitive and motor
contributions from the cerebellum.
PTSD symptom severity was also curiously associated with

reduced volume of bilateral lobule X (which comprises the
flocculonodular lobe), but its association with PTSD diagnosis
was non-significant. The flocculonodular lobe is primarily impli-
cated in ocular tracking and regulation of the vestibular system
[102]. Yet, when depression diagnosis was added to the model,
there was a significant negative effect of depression on right
lobule X, whereas effects of PTSD were non-significant. Structural
differences in lobule X have previously been observed in major
depressive disorder [103], and these differences have been
attributed to somatic complaints, such as dizziness, that are
frequently endorsed by patients with depression. PTSD and major
depressive disorder are highly comorbid [104, 105]. Therefore,
smaller lobule X volume may perhaps be unique to patients with
prominent depressive features and/or a more somatic symptom
profile.
In general, PTSD severity was more robustly associated with

cerebellar volume differences than PTSD diagnosis. For instance,
although PTSD’s effects on corpus medullare volumes did not
survive correction when examining diagnosis, there was a
significant association for PTSD severity. The most parsimonious
explanation for this phenomenon is that continuous severity
scores provide a more powerful statistical test than diagnosis.
PTSD status can reflect a wide range of severity within both
patient and control groups, and therefore using diagnosis is, in
effect, disregarding valuable information that explains variance
associated with cerebellar volume. While diagnostic status
provides a clinically useful shorthand, it also fails to capture
phenotypic variability within PTSD.
It is also possible the more robust results might be explained by

the control group containing a mix of trauma-exposed and
trauma-naïve participants. Few sites provided data for trauma-
naïve participants; as such, the majority of our control group
(~88%) was trauma-exposed. We chose to retain trauma-naïve
individuals within the control group to benefit from increased
power associated with the larger sample size, but this may have
introduced additional noise (unaccounted variance) that dimin-
ished the significance of diagnosis-related statistical tests. Our
severity analyses, however, excluded trauma-naïve participants, as
(having no index trauma) they did not complete assessments of
PTSD symptom severity. The small sample of trauma-naïve
subjects precluded us from assessing whether there are cerebellar
volume differences related to trauma exposure (not just PTSD),
and future work to examine this question will be valuable.
Although exploratory analyses suggested that most PTSD
symptom domains – including re-experiencing, avoidance, and
negative changes in cognition and mood – were consistently
associated with cerebellar volumes (See Supplement), it is
imperative that future work aims to consider PTSD beyond
categorical diagnosis (including severity scores and variable
symptom presentations) to create a reliable
neurobiological model.
Overall, despite these significant findings suggesting associa-

tions between PTSD and smaller cerebellar volumes, effect sizes
were small. As such, it is unlikely that structural cerebellar volumes
alone will provide a clinically useful biomarker (e.g., for individual-
level prediction). That said, the large sample size and granular

parcellation in the current study provided us with increased power
and precision to confidently implicate the cerebellum in PTSD.
Indeed, these findings help to resolve a previously mixed
literature, although the small effect sizes stand in contrast to
earlier findings reporting moderate effect sizes [47, 48, 52]. Yet,
small sample sizes are likely to overestimate effect sizes [106]. In
the context of the small effect sizes the current study discovered,
these prior studies would have required upwards of a thousand
subjects for reliable, reproducible results. Prior ENIGMA-PGC
studies in a subset of the current sample have identified similarly
small – albeit slightly larger – effects for other brain region
volumes, including the hippocampus (d=−0.17) and amygdala
(d=−0.11), associated with PTSD [7]. Future work would benefit
from a more systematic comparison amongst brain structures
implicated in PTSD to identify the most robust neural correlates of
the disorder. It is also possible that, in general, true effects are
slightly larger than typically estimated in consortium datasets,
which, by nature, are limited by site variability in measurement
and design. Despite the advantages of larger sample sizes,
statistical modeling often cannot account for other factors that
may contribute to cerebellar volumes due to missing data across
sites. Improved models accounting for other factors affecting
cerebellar structure may provide a clearer picture of the
magnitude of these effects in PTSD. Considering the cerebellum
has historically been both understudied and inconsistently
associated with PTSD, though, these findings provide novel
insight into the pathophysiology of PTSD.
Critically, PTSD is incredibly burdensome at both the individual

and societal level, causing profound distress, functional impair-
ment, and staggering treatment costs. The insights from the
current study have revealed a novel treatment target that may be
leveraged to improve treatment outcomes for PTSD. In fact, prior
work has shown that the cerebellum is sensitive to external
modulation. For example, recent work has highlighted how non-
invasive brain stimulation of the cerebellum can modulate
cognitive, emotional, and social processes commonly disrupted
in PTSD, including mood regulation and context-based prediction
[107, 108]. In other work in depression, electroconvulsive therapy
has been shown to increase volume of cerebellar regions
including lobule VII, and these structural changes were associated
with symptom reductions [109]. Changes in cerebellum functional
connectivity are also linked to reductions in PTSD symptom
severity before and after cognitive processing therapy [110]. As
such, despite small effect sizes, prior work has shown that
cerebellum structure and function is modifiable, and these
localized cerebellum structural findings may provide useful and
more precise targets for neuromodulatory, pharmacological, and
even psychotherapeutic intervention. Ultimately, integrating
neurobiologically-informed targets within treatment protocols
may help establish treatments with stronger and more long-
lasting therapeutic effects.

Limitations
This is the largest study of cerebellar volumetry in PTSD to date,
however, there are several notable limitations. PTSD is a
heterogeneous disorder and is highly comorbid with other
psychiatric conditions (e.g., depression, substance use disorders)
and environmental exposures (e.g., childhood trauma, traumatic
brain injury) that are also linked to alterations in cerebellar
structure [75, 80, 82]. Employing a mega-analysis in a large multi-
cohort consortium dataset enabled us to observe small effect sizes
of PTSD on cerebellar volume in our primary analyses, but many
sites did not provide diagnostic or item-level data for relevant
covariates. Consequently, we were unable to investigate effects of
relevant covariates at the same scale. Future studies would benefit
from investigating unique and shared phenotypes of PTSD and
other common comorbid psychopathologies on the cerebellum to
disentangle potential dissociable effects and complex interactions
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more elegantly. It is also critical for future work to examine how
the cerebellum may be uniquely implicated in the dissociative
subtype of PTSD. Dissociative symptoms in PTSD are linked to
alterations within the midbrain that facilitate passive, rather than
active, defensive responses [111, 112]; observed differences in
cerebellar functional activation and connectivity related to the
dissociative subtype of PTSD [66, 68, 113, 114] may be mediated
by the prominent neural pathways between the cerebellum and
midbrain. The current study was also focused solely on cerebellar
volumetric differences in PTSD. Multiple studies have observed
disrupted cerebellar activity both at rest [48, 66, 114] and during
trauma-relevant tasks [43, 68, 84, 115] in patients with PTSD.
Future work would benefit from improved localization of both
functional and structural changes in the cerebellum that may be
present in PTSD. In addition, individual differences in education
may further explain cerebellar volume reductions and should be
explored in future studies. Lastly, the current study is cross-
sectional in nature; future longitudinal research will be imperative
to better understand whether cerebellum volume confers risk for
PTSD or changes as a function of the disorder.

CONCLUSION
In a sample of over 4000 adults from the ENIGMA-PGC PTSD
Consortium, cerebellum volume was significantly smaller in
patients with PTSD compared to pooled groups of trauma-
exposed and trauma-naïve controls. Specific subregional volume
reductions in the vermis and posterior cerebellum (crus II and
lobule VIIB) align with previous work demonstrating their
involvement in cognitive and affective functions relevant to PTSD,
such as fear learning and regulation. Overall, these findings argue
for a critical role of the cerebellum in the pathophysiology of
PTSD, bolstering support for the region’s contributions to
processes beyond vestibulomotor function.

DATA AVAILABILITY
The data that support these findings are available from the ENIGMA-PGC PTSD
workgroup. Requests for data access should be directed to workgroup leadership.
Please see https://enigma.ini.usc.edu/ongoing/enigma-ptsd-working-group/ and
https://pgc-ptsd.com for more information. Code for statistical analyses conducted
via R can be obtained from the corresponding author (aahuggins@arizona.edu).
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